logo_header_new.jpg

Home

Browse the Catalogue

Shopping

More Ideas

Subscribe to Newsletter

Information

Research + Development

(*) Automatic Translation
(**) Password required

Automatic Translation

More Ideas in Light and Energy - The Blog

Thermodynamo – Small sized Organic Rankine Cycle Heat Motor – Notebook

##################################################

1. Expander

Schlechten Wirkungsgrade der Druckluftmotorn sind bekannt.
“Wirkunggrade” werden gemessen in Kombination Kompressor-Motor
Eingangs-Leisung Kompressor -> Ausgangsleistung Motor
Typisch 8-10 kW -> 1 kW

Realistische Kanditaten für Expander, alle Typen um 1 kW

1.1 Turbine

infinityturbine

ITMini Kit ca. 1500 USD
Öl frei, kaum Verschleiß, hohe Drehzahl, schlechter Wirkungsgrad

Deprag Green Energy

Frau Dübbelde Tel. 09621 371 343, 5 – 20 kW Turbine mit Generator, hermetisch!!!

1.2 Lamellen Motor, Rotor Vane

!!! Bei diesem Typ kommt es zu Abrieb, der im  geschlossenen Kreis wieder in den Motor gelangen kann, Filter?
Edelstahl Varianten machen wahrscheinlich nur Sinn bei korrosiven Medien!!!

Schiebermodifikation: Kohlenstoff Lamellen RedOrbit -> Gottschald

Helwig Carbon – Carbon Graphite Vanes

Air-Tec-Vogel

Herr Vogel, Tel. 0640 6832949

Gast

Gast NL42, Edelstahl ca. 560 EUR
Öl frei möglich , 2500-4000 Std, 500 -2500 rpm, bis max. 5,6 Bar, bis 120° Umgebungstemperatur

Gast via gopro

Tonson

TonsonV4, ca. 250 EUR
Öl wird benötigt, begrenzte Lebensdauer, bis max. 6,6 Bar, bis 120° Umgebungstemperatur

Mannesmann via maku

Herr Born bei Maku c.born@maku-industrie.de
MRD 120 1.300 EUR
MU300 1.500 EUR’
Bei10 Stck. ca. 35% Rabatt

Herr Culossa: Verkäufer bei Mannesmann-demag m.culossa@mannesmann-demag.com
Tel. +49 (0) 711 88 718 – 505

MRD 120-9300

Leistung 1,2 kW
Lastdrehzahl  9300 Umdr/min
Lastdrehmoment 1.2 Nm

 

MU 300-2800

Leistung 2,2 kW
Lastdrehzahl  1/0.6 * 2800 Umdr/min = 4600 Umdr/min (reine Motoreinheit ohne Getriebe)
Lastdrehmoment  0.6 * 7.5 Nm = 4.5 Nm (reine Motoreinheit ohne Getriebe)

 

 

Parker

Germany – Karrst
Tel: +49 21 31 – 40 16 9263 Herr Ralf Auwelaers
Email: scg.productsupport.zylinder@parker.com

Außendienst: Herr Oland Tel. 07157 3892 od. 0175 5756291

Parker P1v-S1200, Edelstahl, 1,2 kW, ca.
schmierfreie Lamelle, 2100 EUR Listenpreis
“normale” Lamelle -> Öl, 1900 EUR Listenpreis
Lebensdauer ca. 1000 Std. +,  bis 100°,

Parker P1V-A, Stahl, 1,6 kW, ca. 1300 EUR Listenpreis
schmierfreie Lamelle, 1300 EUR Listenpreis
“normale” Lamelle -> Öl, 970 EUR Listenpreis
Lebensdauer ca. 1000 Std. +,  bis 100°

1.3 Drehkolben

pneumatikmotor.de – Krisch Dienst – Armak

Mr. Krisch – Tel. +49 71 54 82 400

Armak, GGP04, ca. 3000 EUR
Öl frei, 5000-8000 Stcd., 15 bar, 150°

GGP von Armak ist lieferbar und wird im ORC Prozeß funktionieren.
Kosten 3.000 EUR, gehe zu hohen Drücken (20 bar) um die Leistungdichte
zu erhöhen und damit die Kosten pro KW zu senken.
Dichtungsproblem  ist wohl noch nicht gelöst. Magnetkopplung oder
Motor-Generator-Einheit in hermetisches Gehäuse.

1.4 Scroll

Air Squared

Air Squared E15H22N4.25, 3000 USD inklusive Magnetkopplung
Öl frei, 13,8 Bar, 175°

2. Working Fluid

!!! Fluid Properties – vapor pressure – engineeringtoolbox.com !!!

Review Kältemittel
R134a (Infinity turbine < 90° Celsius)
R245fa (Infinity turbine > 90° Celsius) – genetron

Dichlormethan – methylene chloride
Propan
Butan
wolframalpha

3. Generator

motenergy

ME1016: 1000 W, 1000 rpm, 12 VAC | 3000 W, 3000 rpm, 36 VAC
ME1112 PM: 1000-4000 W, 1400-2500 rpm, 160-280 VAC
efficiency about 85%

dvetech PMG für kleine Windräder 0,2 – 20 KW, 200 bis 1200 rpm

ginlong

GL-PMG-500A: 700 W, 500 rpm, 50V
GL-PMG-1000: 1400 W, 500 rpm, 300 V
efficiency ??

ebay: permanentmagnet+generator

Permanet magnet alternator

smart drive like the on from Ecoinnovation

daswindrad.de

http://tech.groups.yahoo.com/group/microhydro

Ebay Suche nach Windgenerator+Generator

4. Components

Sealing

Parker
Frau Sabrina Trautmann
Tel 07144 206 21 51
Fax 07144 206 38 55
sabrina.trautmann@parker.com

Material für Fluor-Kohlenwasserstoffe V3819-75, Elastomer

Dichtungstechnik Bensheim
Marcus Schofer
Tel. 06251-8415-0

verkauf@dichtungstechnik-bensheim.de

Magnetic coupling

www.dst-magnetic-couplings.com
DST Liste
Herr Matwich Tel. 0239461676
Metallischer Spalttopf Verluste bei 1500 Umdr/min 90% bei 3000 Umdr/min 80%, Druck 25 bar
Glasspalttopf Verlustfrei, Druck bis 16 bar
PTFE Dichtungsring

Temperatur abhängig von Magneten: Neodymium bis 150 ° Celsius, Nickel Cobalt bis 350° Celsius
Preis metallisch 2 Nm 190 EUR
Glas 4Nm 287 EUR

Möglicher Kunststoff für Spalttopf PEEK, bedingt PTFE

oder flache Kupplung mit Keramikdeckel z.B. Rescor 914 od. Rescor 915?
Preis Rescor 6mm x 150mm x 150mm ca. 800,- EUR !!!!

www.tea-hamburg.de

Heatexchanger

Heat exchanger – airec Sweden
plateheatexchanger
– Turkey

www.swep.net

 

Feed Pumps

Sero PumpSystems
Pumpe alcohol-injection

Idea: injection via Venturi effect

Refrigerant, Different Components

esska
www.kaelteklimashop.de

Pneumatic Cylinders for Expansion

RS-Online or Ebay
ISO cylinder – Norgren Datasheet
ISO cylinder – Parker Datasheet

5. Forum and Help

Innovationslabor – Hilfe bei Förderanträgen Dr. Pablo Berger – innolabor.de

biodiesel.infopop.cc
navitron

fieldlines.com

www.refrigeration-engineer.com/forums/archive/index.php/t-9356.html
help – Kaeltetechnik Forum www.kaelte-treffpunkt.de
user R8 aus Freiburg?
extremecooling (***) Praxis Tips, Löten, Befüllen …

yahoo group – organic_rankine_cycle
yahoo group – solar_concentrators

the old solar-concentrator from chichlid

Test und Pruefinstitut Karlsruhe

6. Rankine Systeme

7.1 Rankine Cycle

Commercial

davinci-mode / Wankel engine
ormat
eneftech
cogenmicro
termocycle
genlec
ENERBASQUE
freepower.co.uk

Experimental

infinityturbine system
Build your own Brand 5-10 KW ORC
cyclonepower.com
matteranenergy – new feedpump idea
http://www.biogen.webs.com/
MIT solar stginternational
turbolina
applidyne
klima-becker – Hinweis von Herrn Klemenz IHK-Freiburg

Mechanik – Klaus Bengel Tel. 640 371

7. Theory

organicrankine – many links related to scroll systems

ORC – Thermodynamics Theory – Sylvain Quoilin
PhD Rankine Cycle – Sylvain Quoilin
Design and Analysis of 1 KW Rankine Cycle with Multi Vane Expander

 

8. Funding

www.kickstarter.com

9. Useful Relation

Celsius in Fahrenheit = (( TCelsius × 9 ) / 5 ) + 32

1 bar = 10^5 N/m^2 = 10^5  pascal = 10^5 W sec/ m^3 = 1 kg/cm^2 = 14.5037738 psi (pounds per square inch)
1 W = 1 N m / sec = 10^-5 bar m^3 / sec

R_Air = 287.2 W sec/(kg K)
Cp_Air = 1010 W sec /(kg K)

n = Cv/Cp
n_Air = 1.4
n_R245fa = 1.13

1 inch ( zoll) = 2,54 cm

1/4 ” =  0,683 cm
3/8 ” = 0.95 cm

 

 

 

 

 

Filed under: exergia's projects,rankine engine — exergia posted 16/04/2012 at 6:32 pm



Thermodyna – Small sized Organic Rankine Cycle Heat Motor – 2. Expander

Something new from the blog  …

Here the first post regarding an old idea lying in the drawer for several years: Small sized Organic Rankine Cycle Heat Motor. Project name is Thermodyna. Step by step we will publish the latest results regarding 1. cycle configuration, 3. working fluid, 4. generator, … Today we start with the logical number 2, the expander.

2. Expander / Expansionsmaschine

The most important part in a Rankine cycle system is the expander, tbe unit converting the energy stored in the pressurized fluid into mechanical i.e. rotational energy. Off the shelf industrial parts driven by pressurized air are airmotors. Many different types are available:

2.1. Radial Piston Engine / Radialkolbenmotor

Radial engine in a cut-away view

http://en.wikipedia.org/wiki/File:Radial_engine.gif

 

Section Drawing


Type P1V-P, Parker Hannifin Catalog

 

2.1.1 Huco Dynatork


Type Dynatork 7, Huco Catalog

Specification:

- Maximal input pressure: ~7 bar
- Maximal temprature: < 70 deg.
- Oil required: yes
- Operation time: ?
- Power, air consumption, speed: see below

 

2.1.2 Globe Airmotors

 


Type RM110 – Datasheet – Globe. Globe Catalog

Specification:

- Maximal input pressure: ~8 bar
- Maximal temperature: <80 deg.
- Oil required: yes
- Operation time: 5000 – 8000h
- Power, air consumption, speed: see below
- Inside the housing there has to be a pressure of ~1 bar

2.1.3 Parker

Germany – Karrst

 


Type P1V-P SERIES – Datasheet – Parker, Parker Hannifin Catalog

Specification:

- Maximal input pressure: ~7 bar
- Maximal temperature: < 70
- Oil required: yes
- Operation time: ?
- Power, air consumption, speed: see below

 

2.1.4 Tonson

2.2 Rotor Vane Motor / Lamellenmotor

Section Drawing


Parker Hannifin Catalog

 

2.2.1 Gast


Type:  NL – Non-Lubricated Air Motor, www.gastmfg.com
No lubrication necessary for these corrosion resistant air-motors.


Type: AM (SS) Series – Lubricated / Stainless Steel Air Motor, www.gastmfg.com
Fully sealed and sanitary design, these corrosion resistant


Type: AM – Lubricated Air Motors, Datasheet – Gast

 

2.2.2 Parker


Type: P1V-A SERIES – Datasheet – Parker, Parker Hannifin Catalog

 

Specification:

- Maximal input pressure:
- Maximal temperature:
- Oil required:
- Operation time:
- Power, air consumption, speed: see below

2.2.3 Ober Italy

 

2.3 Gas Pressure Motor / Drehkolbenmotor

2.3.1 Armak


Type GGP04 – Datasheet – Armak, www.armakmotor.com

Specification:

- Maximal input pressure: ~15 bar
- Maximal temperature: < 150 deg.
- Oil required: no
- Operation time: ?
- Power, air consumption, speed: see below

 

 

Manfacturers characterize their engines with diagramms showing the mechanical energy versus rotational speed and air consumption versus speed for different air intake pressures. Information about the engine’s efficiency are hard to find. As a first attempt to compare different engine’s efficiencies we suggest to calculate the normalized value  of specific power, the quotient of power  devided by air consumption ( [ ] = W / (l/sec) ) and plot it versus intake pressure. The results are shown below. The data values have been taken from the abowe cited data sheets. The plot also includes the maximum power that could be achived from pressurized air. As comparative process we use an isentropic expansion. The red curve shows power generated by filling the engine’s volume and the green power generated by expansion. The mathematical model is published here. We are in an ongoing process to discuss those results with some manufacturers.

Normalized Power per Inlet Air Consumption

Normalized Power per Exhaust Air Consumption (Free Air)

 

 

Filed under: air engine,airmotor,cogeneration,exergia's projects,rankine engine,thermodyna — exergia posted 11/03/2012 at 9:13 am



exergia’s experiments – Schmidt Wheel 2

1) The Idea: Diodes with control rods
The orientation of the diodes should only change between horizontal and upright orientation with a slope only to the right or only to the left side. So we connect the pivoted diodes b to the end of the spokes with radius r and control the swinging movement via a control rod connected bp to the other end of the diodes.

2) Configurations with 1,2 and 3 spokes and diodes up and down


3) Simulation: Method of virtual displacement
To calculate the driving torque i.e. the tangential force Fr (unkown) resulting from the gravitational force Fm (known) acting downwards on the diodes, we use the method of vitual displacement. Here we choose an numerical attempt: Find the displacement dM of the center of mass of the diode when the spokes are rotated about dAlpha. Energy conservation yields to:

dM * Fm = dAlpha * r * Fr

4) The simulation results


Useful links:
2d mechanical simulation software: Working Model 2d
See also this page, may be nothing useful is inside:
drinking bird wheel on besslerwheel.com
Torque and math

Filed under: exergia's projects,gravity wheel,minto wheel — exergia posted 11/08/2011 at 7:29 pm



exergia’s experiments – LightRotor Rotary Candle Lantern

We are always glad to get some help from friends testing new prototypes. Ok, sometimes we combine it with having some beer and it looks more like an Irish pub then a testing lab. But don’t be fooled: there are really results helping to improve the things …


Many thanks to Esther, Dorothee, Tomas and Thomas

And: The LightRotor is ready for shipping and you may order here: LightRotor – Rotary Candle Lantern

Filed under: exergia's projects,lightrotor,solar chimney — exergia posted at 4:10 pm



exergia’s experiments – Minto Wheel Kit

The most crucial point to build a Minto wheel – see post Iske Wheel alias Minto Wheel is the working fluid. Adequate fluids that have a boiling point at atmospheric pressure below room temperature are toxic, flammable and not easy to handle. For this reason we started experiments with a ready made device that has a kind of structure like a Minto wheel’s spoke:

The famous “Drinking Bird”

We tried to use the birds as spokes for the wheel. By the way: you can order the bird in exergia’s new energy shop.

The construction

The prototype




 

Until now we did not achieve a proper working wheel … experiments will be continiued. We would love to get some feedback.

May be you are interested in a kit for own experiments. Don’t hesitate to contact us.

Filed under: exergia's projects,gravity wheel,minto wheel — exergia posted 08/07/2011 at 4:15 pm



exergia’s experiments – Schmidt Wheel 1

The classic wheel:

Idea: use a Drinking bird like device (“mechanical flow diode”) as spoke like structure of a wheel and build somethinmg similar like a Minto wheel.

Two main entropy sources could drive the process:

1.) Time fluctuating heating and cooling

Heat flows from hot water bassin at a fixed position at the bottom -

2.) Continuously heating and cooling
Water evaporation on one end of the flow diode.

1.) Time fluctuating heating and cooling

During the heating phase – the lower bird part is in contact with the hot water – the symmetrical inclinations of the birds axis towards the water surface normal vector, meaning more or less shifting the center of mass in compensating locations without resulting net torque. So one has to use this unsymmetrical configuration:

Important:
The bird does react very slowly, when the hot water is only in contact with the liquid phase of the working fluid. So you have to dip deeper into the hot water …
You need additional force to put the glass bulb under water … Possibly this may be solved by increasing the wheels momentum of inertiat … add additional masses.

Prototyp:

Does not work properly … because of the thermal mass of the glass bulb there is a more or less continious heating and no real time fluctuation. Of coures amount of  heating power changes during the period in the hot water and outside. But proper operation would need some tricky adjustment of the temperature and amount of fluid inside the bird … don’t know if this would be the right direction to continue …

Take care to include a mechanism to balance the center of mass of the main wheel and the spokes. Otherwise the resulting torque of displaced fluid mass inside the bird may be to small to drive the whole thing …
Stef’s new idea – cut the end of the glass tubes with an oblique angle so the problematical phases of counteracting torque may be eliminated … ???

2.) water evaporation on one end of the flow diode – continuously heating and cooling
The above type will not work here. Because of permanent cooling (and heating) there are phases where the rise of the fluid will shift the center of mass to the up right or left side resulting in compensation a the resulting clock- and counterclockwise torques. So we need a new idea …

Continue “exergia’s expriments – Schmidt Wheel 2″

Filed under: exergia's projects,gravity wheel,minto wheel — exergia posted 01/07/2011 at 5:20 pm



Ideas Archive